Mapping Individual Tree Species in an Urban Forest Using Airborne Lidar Data and Hyperspectral Imagery
نویسنده
چکیده
0099-1112/12/7810–1079/$3.00/0 © 2012 American Society for Photogrammetry and Remote Sensing Abstract We developed a neural network based approach to identify urban tree species at the individual tree level from lidar and hyperspectral imagery. This approach is capable of modeling the characteristics of multiple spectral signatures within each species using an internally unsupervised engine, and is able to catch spectral differences between species using an externally supervised system. To generate a species-level map for an urban forest with high spatial heterogeneity and species diversity, we conducted a treetop-based species identification. This can avoid the problems of double-sided illumination, shadow, and mixed pixels, encountered in the crown-based species classification. The study indicates lidar data in conjunction with hyperspectral imagery are not only capable of detecting individual trees and estimating their tree metrics, but also identifying their species types using the developed algorithm. The integration of these two data sources has great potential to take the place of traditional field surveys.
منابع مشابه
Object-Based Tree Species Classification in Urban Ecosystems Using LiDAR and Hyperspectral Data
In precision forestry, tree species identification is key to evaluating the role of forest ecosystems in the provision of ecosystem services, such as carbon sequestration and assessing their effects on climate regulation and climate change. In this study, we investigated the effectiveness of tree species classification of urban forests using aerial-based HyMap hyperspectral imagery and light de...
متن کاملTree-Species Classification in Subtropical Forests Using Airborne Hyperspectral and LiDAR Data
Accurate classification of tree-species is essential for sustainably managing forest resources and effectively monitoring species diversity. In this study, we used simultaneously acquired hyperspectral and LiDAR data from LiCHy (Hyperspectral, LiDAR and CCD) airborne system to classify tree-species in subtropical forests of southeast China. First, each individual tree crown was extracted using ...
متن کاملFeature-based Tree Species Classification Using Hyperspectral and Lidar Data in the Bavarian Forest National Park
The Bavarian Forest National Park, established in 1970, is a unique area of forests with large nonintervention zones, which promote a large-scale rewilding process with low human interference. Thus, the National Park authority is particularly interested in investigating the structure and dynamics of the forest ecosystems within the park. However, conventional forest inventories are timeconsumin...
متن کاملMapping Savanna Tree Species at Ecosystem Scales Using Support Vector Machine Classification and BRDF Correction on Airborne Hyperspectral and LiDAR Data
Mapping the spatial distribution of plant species in savannas provides insight into the roles of competition, fire, herbivory, soils and climate in maintaining the biodiversity of these ecosystems. This study focuses on the challenges facing large-scale species mapping using a fusion of Light Detection and Ranging (LiDAR) and hyperspectral imagery. Here we build upon previous work on airborne s...
متن کاملForest Stand Segmentation Using Airborne Lidar Data and Very High Resolution Multispectral Imagery
Forest stands are the basic units for forest inventory and mapping. Stands are large forested areas (e.g., ≥ 2 ha) of homogeneous tree species composition. The accurate delineation of forest stands is usually performed by visual analysis of human operators on very high resolution (VHR) optical images. This work is highly time consuming and should be automated for scalability purposes. In this p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012